| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
TCP Window Size Adjustment and Flow Control (Page 1 of 4) We have seen the importance of the concept of window size to TCP's sliding window mechanism. In a connection between a client and a server, the client tells the server the number of bytes it is willing to receive at one time from the server; this is the client's receive window, which becomes the server's send window. Likewise, the server tells the client how many bytes of data it is willing to take from the client at one time; this is the server's receive window and the client's send window. The use of these windows is demonstrated in the topic discussing TCP's basic data transfer and acknowledgment mechanism. However, just as the example in that topic was simplified because I didn't show what happens with lost segments, there's another way that it doesn't reflect the real world conditions of an actual Internet: the send and receive window sizes never changed during the course of communication. To understand why the window size may fluctuate, we need to understand what it represents. The simplest way of considering the window size is that it indicates the size of the device's receive buffer for the particular connection. That is, window size represents how much data a device can handle from its peer at one time before it is passed to the application process. Let's consider the aforementioned example. I said that the server's window size was 360. This means the server is willing to take no more than 360 bytes at a time from the client. When the server receives data from the client, it places it into this buffer. The server must then do two distinct things with this data:
It is critically important that we differentiate between these two activities. Unfortunately, the TCP standards don't do a great job in this regard, which makes them very difficult to understand. The key point is that in the basic sliding windows system, data is acknowledged when received, but not necessarily immediately transferred out of the buffer. This means that is possible for the buffer to fill up with received data faster than the receiving TCP can empty it. When this occurs, the receiving device may need to adjust window size to prevent the buffer from being overloaded. Since the window size can be used in this manner to manage the rate at which data flows between the devices at the ends of the connection, it is the method by which TCP implements flow control, one of the classical jobs of the transport layer. Flow control is vitally important to TCP, as it is the method by which devices communicate their status to each other. By reducing or increasing window size, the server and client each ensure that the other device sends data just as fast as the recipient can deal with it.
Home - Table Of Contents - Contact Us The TCP/IP Guide (http://www.TCPIPGuide.com) Version 3.0 - Version Date: September 20, 2005 © Copyright 2001-2005 Charles M. Kozierok. All Rights Reserved. Not responsible for any loss resulting from the use of this site. |