| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
BGP Overview, History, Standards and Versions (Page 4 of 4) Overview of BGP Functions and Features If I were to summarize the job of BGP in one phrase, it would be to exchange network reachability information between autonomous systems and from this information determine routes to networks. In a typical internetwork (and in the Internet) each autonomous system designates one or more routers that run BGP software. BGP routers in each autonomous system are linked to those in one or more other autonomous systems. Each BGP stores information about networks and the routes to them in a set of Routing Information Bases (RIBs). This route information is exchanged between BGP routers, and propagated throughout the entire internetwork, allowing each AS to find paths to each other AS, and thereby enabling routing across the entire internetwork.
BGP supports an arbitrary topology of ASes, meaning they can be connected in any manner. An AS must have a minimum of one router running BGP, but can have more than one. It is also possible to use BGP to communicate between BGP routers within the same autonomous system. BGP uses a fairly complex system for route determination. The protocol goes beyond the limited notion of considering only the next hop to a network the way distance-vector algorithms like RIP function. Instead, the BGP router stores more complete information about the path (sequence of autonomous systems) from itself to a network. Special path attributes describe the characteristics of paths, and are used in the process of route selection. Because of its storage of not just next-hop but path information, BGP is sometimes called a path vector protocol. BGP chooses routes using a deterministic algorithm that assess path attributes and chooses an efficient route while avoiding router loops and other problem conditions. The selection of routes by a BGP router can also be controlled through a set of BGP policies that specify, for example, whether an AS is willing to carry traffic from other ASes or not. However, BGP cannot guarantee the most efficient route to any destination, because it cannot know what happens within each AS and therefore what the cost is to traverse each AS. BGP's operation is based on the exchange of messages that perform different functions. BGP routers use Open messages to contact neighboring routers and establish BGP sessions. They exchange Update messages to communicate information about reachable networks, sending only partial information as needed. They also use Keepalive and Notification messages to maintain sessions and inform peers of error conditions. The use of these messages is summarized in the topic on BGP general operation, with details (including message formats) in the section on detailed operation. BGP uses TCP as a reliable transport protocol, so it can take advantage of the many connection setup and maintenance features of that protocol. This also means that BGP doesn't need to worry about issues such as message sequencing, acknowledgements, or lost transmissions. Since unauthorized BGP messages could wreak havoc with the operation of the Internet, BGP includes an authentication scheme for security.
Home - Table Of Contents - Contact Us The TCP/IP Guide (http://www.TCPIPGuide.com) Version 3.0 - Version Date: September 20, 2005 © Copyright 2001-2005 Charles M. Kozierok. All Rights Reserved. Not responsible for any loss resulting from the use of this site. |